

JAYOTI VIDYAPEETH WOMEN'S UNIVERSITY, JAIPUR Government of Rajasthan established Through ACT No. 17 of 2008 as per UGC ACT 1956 NAAC Accredited University

## Faculty of Education and methodology

**Department of Science and Technology** 

- Faculty Name- Jv'n Narendra Kumar Chahar (Assistant Professor)
- Program- B.Tech 8thSemester
- Course Name Cryptography and Network Security

Session no.: 10

Session Name- Feistel cipher structure

Academic Day starts with -

 Greeting with saying 'Namaste' by joining Hands together following by 2-3 Minutes Happy session, Celebrating birthday of any student of respective class and National Anthem.

Lecture starts with- quotations' answer writing

Review of previous Session - Transposition Techniques

Topic to be discussed today- Today We will discuss about Feistel cipher structure

Lesson deliverance (ICT, Diagrams & Live Example)-

Diagrams

Introduction & Brief Discussion about the Topic – Feistel cipher structure

## **Feistel Cipher Structure**

The input to the encryption algorithm is a plaintext block of length 2w bits and a key K. the plaintext block is divided into two halves L0 and R0. The two halves of the data pass through "n" rounds of processing and then combine to produce the ciphertext block. Each round "i" has inputs Li-1 and Ri-1, derived from the previous round, as well as the subkey Ki, derived from the overall key K. in general, the subkeys Ki are different from K and from each other.

All rounds have the same structure. A substitution is performed on the left half of the data (as similar to S-DES). This is done by applying a round function F to the right half of the data and then taking the XOR of the output of that function and the left half of the data. The round function has the same general structure for each round but is parameterized by the round sub key ki. Following this substitution, a permutation is performed that consists of the interchange of the two halves of the data. This structure is a particular form of the substitution-permutation network. The exact realization of a Feistel network depends on the choice of the following parameters and design features:

Block size - Increasing size improves security, but slows cipher

Key size - Increasing size improves security, makes exhaustive key searching harder, but may slow cipher

Number of rounds - Increasing number improves security, but slows cipher

Subkey generation - Greater complexity can make analysis harder, but slows cipher

Round function - Greater complexity can make analysis harder, but slows cipher

Fast software encryption/decryption & ease of analysis - are more recent concerns for practical use and testing.



Fig: Classical Feistel Network



Fig: Feistel encryption and decryption

The process of decryption is essentially the same as the encryption process. The rule is as follows: use the cipher text as input to the algorithm, but use the subkey ki in reverse order. i.e., kn in the first round, kn-1 in second round and so on. For clarity, we use the notation LEi and REi for data traveling through the decryption algorithm. The diagram below indicates that, at each round, the intermediate value of the decryption process is same (equal) to the corresponding value of the encryption process with two halves of the value swapped.

## **Reference-**

**1. Book:** William Stallings, "Cryptography & Network Security", Pearson Education, 4th Edition 2006.

## **QUESTIONS: -**

Q1. Explain Feistel structure with diagram.

Q2. What is the process of encryption and decryption in Feistel cipher structure?

Next, we will discuss about Block Cipher Principals.

• Academic Day ends with-National song 'Vande Mataram'